
Design of a Framework for
Compressed-Encrypted-Stackable File Systems

Sapna Bafna IEEE Student Member No. 41292943, sapnabafna@ieee.org
Abhinay Kampasi IEEE Student Member No. 41293277, abhinaykampasi@ieee.org
Aditya Kulkarni IEEE Student Member No. 41293286, adityakulkarni@ieee.org

PICT IEEE Student Branch,
Pune Institute of Computer Technology,

Dhankavdi, Pune-411043, India.

Abstract: The need for security of information and its efficient storage has gained
significance over the years. Existing file systems can be enhanced to do this. In this
paper we propose a file system framework, the Compressed-Encrypted-Stackable File
System (CES FS). This file system framework aims to provide a secure interface
between the user and the device-level file system. The framework supports automatic
compression and encryption of data obviating the need for compression and
encryption utilities. The file-system transpires to be very efficient and easy to use,
coupled with high security and efficient storage management. The CES file-system
framework provides developers with an interface that enables them to provide new
compression and encryption algorithms and hence gives the developer the flexibility
to select from a range of compression and encryption algorithms.

Index Terms: Virtual stackable file system, vnode interface, intelligent file system

1 Introduction
The need for a secure system is paramount today.
It is critical for the system to provide efficient and
secure data storage. Though the currently
available file systems in Unix and NT provide
security in terms of restricting access to data on
the disc to unauthorized users, they do not change
the data format in any way. If the file system
encrypts the data before storing it on the disc,
then even a direct hit on the disc would not leak
out the information.

Another important issue is how
efficiently the file system stores data. The NASA
Goddard Conference on Mass Storage Systems
and Technologies [10] emphasized on current and
future practical solutions addressing issues in data
management, long-term retention of data and data
distribution. One of the key metrics that file
systems will be rated by will be the efficient
utilization of storage resources. Today there are a
host of compression utilities like WinZip [9],
which compress data and thus help the user in
saving disc space. There are merits and demerits
of using a separate utility for compressing data.
The key advantage is that the user can decide the
file to compress according to his/her
requirements. On the other hand, the demerit is
that the user has to follow a tedious procedure for
compressing the files. Things would be much
more efficient if the file system that is operating,
performs the job at the kernel level and
automatically provides compression of data.

The CES file system framework aims at
providing this. In the current scenario the most
popular method of adding functionality to file
systems it to either build new ones or to add
functionality to existing ones by modifying them.
For example, it is desirable to extend existing file
systems to include new features such as
encryption and compression. The CES file system
framework will produce an extension to VFS
compatible file systems in Linux. It is a file
system that is stacked a layer above the physical
file system. When a file system is mounted on top
of any other file system, the stackable file system
adds a performance overhead of only 1–2 % for
accessing the other file system [1] and all the new
features can be included in the stackable layer.
 All the invoked system calls [8] will pass
through the CES layer before passing through the
underlying file system layers. This concept is
exciting because we can leverage existing file
systems and add functionality such as encryption
and compression.

The currently available file systems
provide additional features. Each file system is
unique and serves a specific purpose when used
independently. However we propose that instead
of writing all these different file systems, you
could write a file system, which sits on top of the

already existing file system and helps to
overcome its limitations. Figure1 shows the
proposed topology of our file system stack.

 S

 Generic

 Specific

 Generic

 Specific

 Fig. 1. File system stacking, where CES FS
 fits inside the kernel.

The VFS (Virtual File System) [3], [4] is
the software layer in the kernel that provides the
file system interface to user-space programs. It
also provides an abstraction within the kernel,
which allows different file system
implementations to coexist [2]. As our file system
framework is stackable it only has to implement
the vnode [2] operations that it wishes to change.
Other operations are automatically passed through
between stacked layers. This option is similar to
that of object-oriented programming models,
where a subclass can use the methods of the
superclass [1].

CES FS framework handles many of the
internal details of operating systems, thus freeing
developers from dealing with kernel specifics and
provides them with a framework to build a file
system, which has facilities for compression and
encryption. This framework enables the user to
select from a variety of compression and
encryption algorithms. Moreover the user has an
alternative of having different combinations of
algorithms from amongst those provided by the
file system framework. As multiple algorithms
can be used, the user has the flexibility of
selecting an encryption algorithm and one-or-
more compression algorithms of his choice,
depending on the importance of the file.
 Thus the proposed file system
framework can successfully accomplish the need
for security and storage management. This
framework can be extended to become an
intelligent file system that understands patterns

 VV

 Ext2FS

 VFS

 A CES
File System

and accordingly decides the level of compression
to be applied to it. Such an implementation could
then be considered to serve the purpose of an
ideal file system.

2 Design Goals
In this section we take a glance at the
development and architecture of the CES file
system framework.

2.1 Flexibility
Traditional file systems generally incorporate a
single compression or encryption algorithm. The
file system framework proposed by us takes a step
ahead by providing the user a wide range of
algorithms. The user has the choice of selecting
any one, or a combination of these algorithms.
There is nothing like a standard algorithm that is
used for all system calls (like read/write). The file
system framework provides the user the liberty to
choose the algorithms that he deems fit. The user
also has the freedom to skip compressing or
encrypting his files.

2.2 Programming Model
In the file system framework an interface has
been provided by which the user can select any
algorithm from the available list. If the developer
desires to use an algorithm apart from this list
then he/she can do so by making an appropriate
entry in the existing list. Along with this entry,
he/she has to include the corresponding functions
with predefined parameters, i.e. the functions for
encoding and decoding included by him/her
should accept some parameters and return some
values in a standard format prescribed by the CES
file system framework.

2.3 Performance
User-level file systems are the slowest because
each exchange of information between the kernel
and the file-system server causes a context switch
[6]. File systems are fastest when they run in the
kernel and interact directly with device drivers.
Stackable file systems are generally fast because
they run in the kernel and are much faster than
their user-level counterparts.

We propose to blend the advantages of
both these techniques. Here the code is written at
the user level and implemented at the kernel level
thereby resulting in easier coding and faster
execution. This implicitly means that the
compression and encryption will be done within
the kernel.

2.4 Portability
This factor defines the ease with which code
written for one file system can be ported to

another.
User-level code is the easiest to port,

because it is written just like any other user-level
C program. For example, the Amd automounter
has been easily ported to dozens of different Unix
platforms and operating-system versions [1].
Low-level in-kernel file systems are the hardest to
port because they depend on many kernel
specifics and details of device-driver
implementations [2]. Rarely do these file systems
get ported to other platforms; often the effort is
large enough that a complete rewrite is easier than
porting.

 Stackable file systems run as part of the
kernel and as such also depend on kernel
internals. The file system generated by our
framework will be portable across different Unix
systems. As it uses a stackable vnode interface,
porting it to other platforms requires those
platforms to support the same stacking API.

2.5 Error Checking
The user is given the flexibility to choose
algorithms for compression and encryption. Thus
it thus becomes mandatory to verify the entries
provided by the user and check if any errors are
encountered. In that case, the CES file system
framework must handle the errors.

The primary error that can be detected by
our error detection mechanism is the improper
selection of an algorithm. While mentioning the
algorithms to be used, if the user does not enter
the correct algorithm or does not enter any
algorithm at all, then the framework selects its
default algorithm, Data Encryption Standard
(D.E.S.) for encryption and Huffman algorithm
for compression.

3 Design
This section will elaborate on the design goals
mentioned briefly in the previous section. It
describes the architecture and functionality of the
CES file system framework.

3.1 Terminology
The design of the CES framework incorporates a
thorough study and understanding of concepts
like Virtual File System Interface, Stackable
templates and other related terms.

3.1.1 Virtual File System
The Virtual File System is the software layer in
the kernel that provides the file system interface
to user-space programs [3]. It also provides an
abstraction within the kernel, which allows
different file system implementations to coexist.
When you wish to mount a block device onto a
directory in your file space, the VFS will call the
appropriate method for the appropriate file

system. The dentry for the mount point will then
be updated to point to the root inode for the new
file system [6].

 Basically, VFS is a generic section of
file-system code in the (Unix) kernel, often called
the upper-level file-system code because it is a
layer of abstraction above the file-system specific
code. In particular, when system calls begin
executing in the kernel’s context, the kernel then
executes VFS code for those system calls. The
VFS then decides which file system to pass the
operation onto. The VFS is generic in that it does
not contain code specific to any one file system;
instead, it calls the predefined file-system
functions that were given to it by specific (lower
level) file systems [1], [2].

Vnodes are the primary objects
manipulated by the VFS. The VFS creates and
destroys vnodes. It is a handle to a file maintained
by a running kernel. This handle is a data
structure that contains useful information
associated with the file object, such as the file’s
owner, size, last modification date, etc [2]. The
Vnode object also contains a list of functions that
can be applied to the file object itself. These
functions form a vector of operations that are
defined by the file system to which the file
belongs. It fills them with pertinent information,
some of which is gathered from specific file
systems by handing the vnode object to a lower
level file system. The VFS treats vnodes
generically without knowing exactly, which file
system they belong to.

 The Vnode Interface is an API that
defines all of the possible operations that a file
system implements. This interface is often
internal to the kernel, and resides in between the
VFS and lower-level file systems. Since the VFS
implements generic functionality, it does not
know of the specifics of any one file system.
Therefore, new file systems must adhere to the
conventions set by the VFS; these conventions
specify the names, prototypes, return values, and
expected behavior from all functions that a file
system can implement.

3.1.2 Stackable Templates
Stackable templates provide basic stacking
functionality without changing other file systems
or the kernel. This functionality is useful because
it improves portability of the system. Such a
template handles many of the internal details of
operating systems, thus freeing developers from
dealing with kernel specifics [7]. It provides a
stacking layer that is independent from the layers
above and below it .

In the generation of file system code, we
have used Basefs [1] as a stackable template.
Basefs appears to the upper VFS, as a lower level

file system and to file systems below it as a VFS.
Initially, Basefs simply calls the same vnode
operation on the lower level file system. Basefs
performs data reading and writing on whole
pages. This simplifies mixing regular reads and
writes with memory-mapped operations, and
gives developers a single paged-based interface to
work with.

To improve performance, Basefs copies
and caches data pages in its layer. It will also
cache pages of the layers below it, in case the
lower-level file system does not do so directly (on
some operating systems, the VFS is responsible
for inserting pages into the cache, not the actual
file system). Basefs saves memory by caching at
the lower layer only if file data is manipulated and
fan-in was used; these are the usual conditions
that require caching at each layer. Basefs adds
support for fan-out file systems natively. This
code is also included conditionally, because it is
more complex than single-stack file systems, adds
more performance overhead, and consumes more
memory. Basefs includes (conditionally
compiled) support for many other features. This
added support can be thought of as a library of
common functions: opening, reading or writing,
and then closing arbitrary files; storing extended
attributes persistently; user-level utilities to mount
and unmount file systems, inspecting and
modifying file attributes, and more.

3.2 Code Generation
The C.E.S file system generates a lot of code
using the File System Translator i.e FiST [1]. The
FiST language is the first of the three main
components of the FiST system. Figure 2 shows
the Operational diagram of FiST.

 FiST Input File

 Basefs
 Templates

 Stackable file
 System sources

 Fig. 2. FiST Operational Diagram

The FiST system is composed of three
parts: the language specification, the code
generator, and stackable file system templates.
The overall operation is shown in figure 2. The
figure illustrates how the three parts of FiST work
together.

 FiSTgen

3.3 Implementation
The CES file system framework has a very user
friendly API. The user has the option of selecting
a name space on which he wants to mount the file
system. He has a range of algorithms to select
from and default ones are used if non are
provided. Depending upon the algorithms selected
by the user, the ones barring them are commented
in the file, which will later be referred to by the
file system to call appropriate functions upon
invocation of system calls.

The format of the command entered by
the developer is as follows:

[name space] [compression algorithm no. 1, 2,…]
 [encryption algorithm no. a , b,…]

List of compression algorithms:
1. Huffman
2. BMP
3. RLE

List of encryption algorithms:
a. D.E.S.
b. Blowfish
c. Rot2

Figure 3 explains the directory structure
before mounting while Figure 4 shows the same
after mounting.

 File system X

 Fig. 3. Directory structure before mounting

Consider that the developer gives a command
like:

/usr/CESFS_folder 1 3 a

Interpretation of the Command:
The developer prior to giving the command
should create the CESFS_folder. After successful

mounting [2], the folder will have type of file
system as CES FS, with the mentioned algorithms
being used for compression and encryption as
parameters.

 Fig. 4. Directory structure after mounting

All file system operations performed
under the CESFS_folder will henceforth follow
the specifications of the CES file system
framework. When you unmount this file system,
the CES FS will no longer serve the
CESFS_folder. Hence any access to files under
the CES_FS folder will result in the user reading
encrypted data., if encryption was used when it
was mounted.

After the file system has been mounted it
is stacked on top of the lower level file systems.
As we use a stackable interface, the system calls,
which are executed for doing any operation, pass
through our file system layer. It is at this time that
we can call the required functions as per the users
specifications and the output is given to the lower
level file systems. The lower level file system is
unaware of the source from where they are getting
the input. Thus they just process the output of the
file system generated by our framework, as they
would normally have. As the CES file system
framework is in the kernel, the overhead incurred
is just 1-2% [1]. Figure 5 shows how the C.E.S
framework will process a write system call.

As shown in the figure and with respect
to the command given above, when a system call,
which processes a request to save data on the disc,
then it, passes through the CES layer. And the
appropriate compression and encryption functions
get called as per those specified by the user. It is
important to note that the user has to specify this
order of algorithms only at the time of mounting.
In this case, our layer calls the functions of
Huffman Compression, RLE compression and

 /

 usr

Folder1

 etc

CESFS_folder

 bin

temp

File system X

A CES FS

 /

 usr bin etc

Folder1 CESFS_folder

DES encryption in order. Similarly when a read
system is encountered then the reverse process
occurs as shown in Figure 6.
Firstly DES decryption gets called, followed by
RLE decompression and finally Huffman
decompression is called.

 Fig. 5. Illustration of write system call

 In case, the user enters a command of the
format:

/usr/CES_folder 1 NULL

With this specification all the operations
performed in the CES_folder undergo only
Huffman compression and no encryption is
performed.

As we can see from the figure above, the
interface we propose will act as a perfect stack. It
simply places itself between the user and the
kernel, without either having knowledge about its
existence. The primary advantage of the CES file
system framework is that the existing file systems
need not be changed at all. Moreover as the
stacking takes place in the kernel, there is hardly
any compromise on the speed. Security of the

system is enhanced greatly and efficient storage
management is achieved, improving system
performance Besides this developers can provide
new algorithms for compression and encryption
with minimum effort thus building new file
systems.

 Fig. 6. Illustration of read system call

4 Expected Results
A detailed study of the file system framework
proposed by us shows that it will improve the
performance of the system to a great extent. By
performance, we mean the security of the system
coupled with efficient storage management. The
initial results have been encouraging. Figure 7
shows the system time comparison between
various CES file systems [1].

We hope to achieve improvement in
system security as well as storage management.
This improvement when compared to the Ext2 [5]
file system also results in performance overhead.
As all system calls have to pass through the CES
layer, a small amount of additional time is
required to perform the desired operations.
However the advantages far outweigh these
limitations of the file system.

 System Call read()

 read_X()

 Local
 Disc

 Data

 read_CESFS()

 A CES FS

 Huffman

 RLE

 DES

 File System X

 System Call write()

 write_X()

 Local
 Disc

 Data

 write_CESFS()

 A CES FS

 Huffman

 RLE

 DES

 File System X

 S100
 Y
 S
 T 80
 E
 M
 60
 T
 I 40
 M
 E
 20

 (ms)0

 ext2fs cesfs cesfs cesfs
 with with with
 encryption compression both

 Fig. 7. System time for retrieving file attributes
 using lstat system call

 We anticipate that the additional time
taken for encryption will be slightly less than that
required for compression. The framework
promises to be very successful because it is an
enhancement and not a replacement to existing
file systems, and as the code resides in the kernel,
the overhead incurred is low.

 %
 P P
 E
 R
 F
 O
 R
 M
 A
 N
 C
 E
 E
 O
 V
 E
 R
 H
 E
 A
 D
 O

Fig. 8. Performance overhead of a
CES FS across three operating systems

The overhead will be different across different
Unix platforms [2], [7]. Figure 8 shows the
proposed behavior of our file system across the
basefs, wrapfs and actual operating systems [1].
We have based our assumption on performance
figures of file systems produced by FiST.

5 Future Scope
The proposed framework will generate file
systems, which could be called as complete file
systems. We are currently working on enhancing
the concept of CES FS by making it an intelligent
file system.

5.1 Intelligent CES FS
We have seen that CES FS applies the encryption
and compression algorithms to every file within
the name-space, irrespective of its access
frequency. In broad terms, it will compress every
file to the same extent whether it is accessed once
a year or once a day.

We are working on heuristics that will
enable us to evolve CES FS into an intelligent file
system. By ‘intelligence’ we mean that the file
system keeps a track of how frequently a file is
used and accordingly decides the level of
compression to be applied to it. For instance, a
particular which is accessed once a month would
be reduced by 90% of it’ s original size while a
file which is used once a week would be shrunk
by 10% of its size. This is because compression
requires considerable CPU utilization.
Additionally, some files, which are used
frequently, would be stored in some sort of a
cache, with minimal compression so that they can
be accessed with minimal delay.

6 Conclusion
The basic aim of working on the CES FS was to
design a file system framework, which would
serve the purpose of filling the loopholes of
existing file systems enable developers to
leverage existing stable file systems by providing
them with a means to incorporate both security
through encryption and efficient data storage
through compression. The developer no longer
will require intricate knowledge of file system
internals to provide this functionality. The entire
process of writing a file system with the desired
compression or encryption algorithm will require
writing 2 simple functions which will provide the
ability to encrypt and decrypt and the other which
will provide the compression and decompression
facility.

We have been successful in doing so by
designing a file system framework that builds
itself on existing file systems providing additional
benefits. The CES file system automatically

 Actual

 Wrapfs

 Basefs

 2.1

 4.9

 22.9

encrypts and compresses the files stored in its
name-space. Thereby providing optimum security
and efficient use of storage resources.

With more work on this in the future, we
aim to build an intelligent file system that will
selectively compress files after studying usage
patterns.

Appendix
The CES file system framework makes use of the
concept of virtual file system. A clear
understanding of the VFS interface [1], [2], [4] is
essential for getting acquainted with the
functionality of our file system framework.

Struct VFS
An instance of the vfs structure exists in a
running kernel for each mounted file system. All
of these instances are chained together in a singly-
linked list. The head of the list is a global variable
called root_vp, which contains the vfs for the
root device. The field vfs_next links one vfs
structure to the following one in the list.

typedef struct vfs
 {
 struct vfs *vfs_next;
 struct vfsops *vfs_op;
 struct vnode vfs_vnodecovered;
 u_long vfs_flag;
 u_long vfs_bsize;
 int vfs_fstype;
 fsid_t vfs_fsid;
 caddr_t vfs_data;
 dev_t vfs_dev;
 u_long vfs_bcount;
 u_short vfs_nsubmounts;
 struct vfs *vfs_list;
 struct vfs *vfs_hash;
 kmutex_t vfs_reflock;
 } vfs_t;

Struct Vfsops
The vfs operations structure (struct vfsops, seen
below) is constant for each type of file system.
For every instance of a file system, the vfs field
vfs_op is set to the pointer of the operations
vector of the underlying file system.

typedef struct vfsops
 {
 int (*vfs_mount)();
 int (*vfs_unmount)();
 int (*vfs_root)();
 int (*vfs_statvfs)();
 int (*vfs_sync)();
 int (*vfs_vget)();
 int (*vfs_mountroot)();
 int (*vfs_swapvp)();
 }vfs_ops_t;

Struct Vnode
An instance of struct vnode exists in a running
system for every opened (in-use) file, directory,
symbolic-link, hard-link, block or character
device, a socket, a Unix pipe, etc.

typedef struct vnode
 {
 kmutex_t v_lock;
 u_short v_flag;
 u_long v_count;
 struct vfs *v_vfsmountedhere;
 struct vnodeops *v_op;
 struct vfs *v_vfsp;
 struct stdata *v_stream;
 struct page *v_pages;
 enum vtype v_type;
 dev_t v_rdev;
 caddr_t v_data;
 struct filock *v_filocks;
 kcondvar_t v_cv;
 } vnode_t;

Struct Vnodeops
An instance of the vnode operations structure
struct vnodeops, listed in exists for each different
type of file system. For each vnode, the vnode
field v_op is set to the pointer of the operations
vector of the underlying file system.

typedef struct vnodeops
 {
 int (*vop_open)();
 int (*vop_close)();
 int (*vop_read)();
 int (*vop_write)();
 int (*vop_ioctl)();
 int (*vop_setfl)();
 int (*vop_getattr)();
 int (*vop_setattr)();
 int (*vop_lookup)();
 int (*vop_link)();
 int (*vop_rename)();…
 }vnodeops_t;

These structures lay the foundation of a stackable
file system. The CES FS uses these extensively to
form a layer above the underlying file system
inside the kernel.

Acknowledgement
 We would like to thank Mr. Aditya Kini
for his guidance and encouragement throughout
the development of this file system framework.
We are also grateful to Mr. Erez Zadok for
answering our queries relating to FiST. A special
thanks to Mr. Gangadhar Hariharan and Mr.
Devendra Desai for their help during our work on
the CES project.

References

[1] E. Zadok, “ FiST: A System for Stackable
 File-System Code Generation,” Thesis
 Computer Science Department Columbia
 University , New York, NY10027, May 2001.
 http://www.cs.columbia.edu/~ezk/research/fist/
[2] U. Vahalia, UNIX Internals, The New
 Frontiers, Prentice-Hall, Upper Saddle
 River, New Jersey 07458, 1996.
[3] D. S. H. Rosenthal, “Requirements for a
 ‘Stacking’ Vnode/VFS Interface,” UNIX
 International, 1992.
[4] R. Gooch, “ Overview of The Virtual File
 System,” July 1999.
 http://www.atnf.csiro.au/~rgooch/Linux/vfs.txt
[5] R. Card Laboratoire MASI-Institut Blaise
 Pascal, T. Ts’ o, Massachussets Institute of
 Technology, S. Tweedie , University of
 Edinburgh, “ Design and Implementation of
 Second Extended File system,” Proceedings

 of the First Dutch International Symposium
 on Linux, ISBN 90-367-0385-9.
 http://web.mit.edu/tytso/www/Linux/ext2intro.htm
[6] M. J. Bach, The Design of The UNIX
 Operating System, Prentice-Hall, Englewood
 Cliffs, NJ, 1986.
[7] A. S. Tanenbaum, Modern Operating
 Systems, Prentice-Hall, Englewood Cliffs, NJ,
 1992
[8] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz,
 R. Magnus, and D. Verworner, Linux Kernel
 Internals, Addison Wesley Longman, 1996.
[9] WinZip, The Archive Utility for Windows,
 version 8.1, 2002.
 http://www.winzip.com/winzip.htm
[10] Eighteenth IEEE Symposium on Mass Storage
 Systems, San Diego, California, April 2001.
 http://esdis-it.gsfc.nasa.gov/MSST/

