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Abstract: The need for security of information and its efficient storage has gained 
significance over the years. Existing file systems can be enhanced to do this. In this 
paper we propose a file system framework, the Compressed-Encrypted-Stackable File 
System (CES FS). This file system framework aims to provide a secure interface 
between the user and the device-level file system. The framework supports automatic 
compression and encryption of data obviating the need for compression and 
encryption utilities. The file-system transpires to be very efficient and easy to use, 
coupled with high security and efficient storage management. The CES file-system 
framework provides developers with an interface that enables them to provide new 
compression and encryption algorithms and hence gives the developer the flexibility 
to select from a range of compression and encryption algorithms. 
 
Index Terms:  Virtual stackable file system, vnode interface, intelligent file system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1   Introduction 
The need for a secure system is paramount today. 
It is critical for the system to provide efficient and 
secure data storage. Though the currently 
available file systems in Unix and NT provide 
security in terms of restricting access to data on 
the disc to unauthorized users, they do not change 
the data format in any way. If the file system 
encrypts the data before storing it on the disc, 
then even a direct hit on the disc would not leak 
out the information.  

Another important issue is how 
efficiently the file system stores data. The NASA 
Goddard Conference on Mass Storage Systems 
and Technologies [10] emphasized on current and 
future practical solutions addressing issues in data 
management, long-term retention of data and data 
distribution. One of the key metrics that file 
systems will be rated by will be the efficient 
utilization of storage resources. Today there are a 
host of compression utilities like WinZip [9], 
which compress data and thus help the user in 
saving disc space. There are merits and demerits 
of using a separate utility for compressing data. 
The key advantage is that the user can decide the 
file to compress according to his/her 
requirements. On the other hand, the demerit is 
that the user has to follow a tedious procedure for 
compressing the files. Things would be much 
more efficient if the file system that is operating, 
performs the job at     the     kernel     level and 
automatically provides compression of data. 

The CES file system framework aims at 
providing this. In the current scenario the most 
popular method of adding functionality to file 
systems it to either build new ones or to add 
functionality to existing ones by modifying them. 
For example, it is desirable to extend existing file 
systems to include new features such as 
encryption and compression. The CES file system 
framework will produce an extension to VFS 
compatible file systems in Linux. It is a file 
system that is stacked a layer above the physical 
file system. When a file system is mounted on top 
of any other file system, the stackable file system 
adds a performance overhead of only 1–2 % for 
accessing the other file system [1] and all the new 
features can be included in the stackable layer.  
  All the invoked system calls [8] will pass 
through the CES layer before passing through the 
underlying file system layers. This concept is 
exciting because we can leverage existing file 
systems and add functionality such as encryption 
and compression. 

The currently available file systems 
provide additional features. Each file system is 
unique and serves a specific purpose when used 
independently. However we propose that instead 
of writing all these different file systems, you 
could write a file system, which sits on top of the  

 
already existing file system and helps to 
overcome its limitations. Figure1 shows the 
proposed topology of our file system stack.   
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           Fig. 1.  File system stacking, where CES FS 
                       fits inside the kernel. 
 

The VFS (Virtual File System) [3], [4] is 
the software layer in the kernel that provides the 
file system interface to user-space programs. It 
also provides an abstraction within the kernel, 
which allows different file system 
implementations to coexist [2]. As our file system 
framework is stackable it only has to implement 
the vnode [2] operations that it wishes to change. 
Other operations are automatically passed through 
between stacked layers. This option is similar to 
that of object-oriented programming models, 
where a subclass can use the methods of the 
superclass [1]. 

CES FS framework handles many of the 
internal details of operating systems, thus freeing 
developers from dealing with kernel specifics and 
provides them with a framework to build a file 
system, which has facilities for compression and 
encryption. This framework enables the user to 
select from a variety of compression and 
encryption algorithms. Moreover the user has an 
alternative of having different combinations of 
algorithms from amongst those provided by the 
file system framework. As multiple algorithms 
can be used, the user has the flexibility of 
selecting an encryption algorithm and one-or-
more compression algorithms of his choice, 
depending on the importance of the file.  
 Thus the proposed file system 
framework can successfully accomplish the need 
for security and storage management. This 
framework can be extended to become an 
intelligent file system that understands patterns 
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and accordingly decides the level of compression 
to be applied to it. Such an implementation could 
then be considered to serve the purpose of an 
ideal file system. 
 
2   Design Goals 
In this section we take a glance at the 
development and architecture of the CES file 
system framework.  
 
2.1   Flexibility 
Traditional file systems generally incorporate a 
single compression or encryption algorithm. The 
file system framework proposed by us takes a step 
ahead by providing the user a wide range of 
algorithms. The user has the choice of selecting 
any one, or a combination of these algorithms. 
There is nothing like a standard algorithm that is 
used for all system calls (like read/write). The file 
system framework provides the user the liberty to 
choose the algorithms that he deems fit. The user 
also has the freedom to skip compressing or 
encrypting his files. 
  
2.2   Programming Model 
In the file system framework an interface has 
been provided by which the user can select any 
algorithm from the available list. If the developer 
desires to use an algorithm apart from this list 
then he/she can do so by making an appropriate 
entry in the existing list. Along with this entry, 
he/she has to include the corresponding functions 
with predefined parameters, i.e. the functions for 
encoding and decoding included by him/her 
should accept some parameters and return some 
values in a standard format prescribed by the CES 
file system framework.  
 
2.3   Performance 
User-level file systems are the slowest because 
each exchange of information between the kernel 
and the file-system server causes a context switch 
[6]. File systems are fastest when they run in the 
kernel and interact directly with device drivers. 
Stackable file systems are generally fast because 
they run in the kernel and are much faster than 
their user-level counterparts.  

We propose to blend the advantages of 
both these techniques. Here the code is written at 
the user level and implemented at the kernel level 
thereby resulting in easier coding and faster 
execution. This implicitly means that the 
compression and encryption will be done within 
the kernel. 
 
2.4 Portability  
This factor defines the ease with which code 
written   for   one file   system can   be ported to   
 

another. 
User-level code is the easiest to port, 

because it is written just like any other user-level 
C program. For example, the Amd automounter 
has been easily ported to dozens of different Unix 
platforms and operating-system versions [1].  
Low-level in-kernel file systems are the hardest to 
port because they depend on many kernel 
specifics and details of device-driver 
implementations [2]. Rarely do these file systems 
get ported to other platforms; often the effort is 
large enough that a complete rewrite is easier than 
porting. 

  Stackable file systems run as part of the 
kernel and as such also depend on kernel 
internals. The file system generated by our 
framework will be portable across different Unix 
systems. As it uses a stackable vnode interface, 
porting it to other platforms requires those 
platforms to support the same stacking API. 
 
2.5   Error Checking 
The user is given the flexibility to choose 
algorithms for compression and encryption. Thus 
it thus becomes mandatory to verify the entries 
provided by the user and check if any errors are 
encountered. In that case, the CES file system 
framework must handle the errors.  

The primary error that can be detected by 
our error detection mechanism is the improper 
selection of an algorithm. While mentioning the 
algorithms to be used, if the user does not enter 
the correct algorithm or does not enter any 
algorithm at all, then the framework selects its 
default algorithm, Data Encryption Standard 
(D.E.S.) for encryption and Huffman algorithm 
for compression.  
 
3 Design 
This section will elaborate on the design goals 
mentioned briefly in the previous section. It 
describes the architecture and functionality of the 
CES file system framework. 
 
3.1 Terminology 
The design of the CES framework incorporates a 
thorough study and understanding of concepts 
like Virtual File System Interface, Stackable 
templates and other related terms.   
 
3.1.1 Virtual File System 
The Virtual File System is the software layer in 
the kernel that provides the file system interface 
to user-space programs [3]. It also provides an 
abstraction within the kernel, which allows 
different file system implementations to coexist. 
When you wish to mount a block device onto a 
directory in your file space, the VFS will call the 
appropriate method for the appropriate file 



system. The dentry for the mount point will then 
be updated to point to the root inode for the new 
file system [6].  

 Basically, VFS is a generic section of 
file-system code in the (Unix) kernel, often called 
the upper-level file-system code because it is a 
layer of abstraction above the file-system specific 
code. In particular, when system calls begin 
executing in the kernel’s context, the kernel then 
executes VFS code for those system calls. The 
VFS then decides which file system to pass the 
operation onto. The VFS is generic in that it does 
not contain code specific to any one file system; 
instead, it calls the predefined file-system 
functions that were given to it by specific (lower 
level) file systems [1], [2].  

Vnodes are the primary objects 
manipulated by the VFS. The VFS creates and 
destroys vnodes. It is a handle to a file maintained 
by a running kernel. This handle is a data 
structure that contains useful information 
associated with the file object, such as the file’s 
owner, size, last modification date, etc [2]. The 
Vnode object also contains a list of functions that 
can be applied to the file object itself. These 
functions form a vector of operations that are 
defined by the file system to which the file 
belongs. It fills them with pertinent information, 
some of which is gathered from specific file 
systems by handing the vnode object to a lower 
level file system. The VFS treats vnodes 
generically without knowing exactly, which file 
system they belong to. 

 The Vnode Interface is an API that 
defines all of the possible operations that a file 
system implements. This interface is often 
internal to the kernel, and resides in between the 
VFS and lower-level file systems. Since the VFS 
implements generic functionality, it does not 
know of the specifics of any one file system. 
Therefore, new file systems must adhere to the 
conventions set by the VFS; these conventions 
specify the names, prototypes, return values, and 
expected behavior from all functions that a file 
system can implement. 
 
3.1.2 Stackable Templates 
Stackable templates provide basic stacking 
functionality without changing other file systems 
or the kernel. This functionality is useful because 
it improves portability of the system. Such a 
template handles many of the internal details of 
operating systems, thus freeing developers from 
dealing with kernel specifics [7]. It provides a 
stacking layer that is independent from the layers 
above and below it .  

In the generation of file system code, we 
have used Basefs [1] as a stackable template. 
Basefs appears to the upper VFS, as a lower level  

file system and to file systems below it as a VFS. 
Initially, Basefs simply calls the same vnode 
operation on the lower level file system. Basefs 
performs data reading and writing on whole 
pages. This simplifies mixing regular reads and 
writes with memory-mapped operations, and 
gives developers a single paged-based interface to 
work with.  

To improve performance, Basefs copies 
and caches data pages in its layer. It will also 
cache pages of the layers below it, in case the 
lower-level file system does not do so directly (on 
some operating systems, the VFS is responsible 
for inserting pages into the cache, not the actual 
file system). Basefs saves memory by caching at 
the lower layer only if file data is manipulated and 
fan-in was used; these are the usual conditions 
that require caching at each layer. Basefs adds 
support for fan-out file systems natively. This 
code is also included conditionally, because it is 
more complex than single-stack file systems, adds 
more performance overhead, and consumes more 
memory. Basefs includes (conditionally 
compiled) support for many other features. This 
added support can be thought of as a library of 
common functions: opening, reading or writing, 
and then closing arbitrary files; storing extended 
attributes persistently; user-level utilities to mount 
and unmount file systems, inspecting and 
modifying file attributes, and more.  
 
3.2 Code Generation 
The C.E.S file system generates a lot of code 
using the File System Translator i.e FiST [1]. The 
FiST language is the first of the three main 
components of the FiST system. Figure 2 shows 
the Operational diagram of FiST.  
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   Fig. 2.  FiST Operational Diagram  
 

The FiST system is composed of three 
parts: the language specification, the code 
generator, and stackable file system templates. 
The overall operation is shown in figure 2. The 
figure illustrates how the three parts of FiST work 
together. 
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3.3 Implementation 
The CES file system framework has a very user 
friendly API.  The user has the option of selecting 
a name space on which he wants to mount the file 
system. He has a range of algorithms to select 
from and default ones are used if non are 
provided. Depending upon the algorithms selected 
by the user, the ones barring them are commented 
in the file, which will later be referred to by the 
file system to call appropriate functions upon 
invocation of system calls. 

The format of the command entered by 
the developer is as follows: 
 
[name space] [compression algorithm no. 1, 2,…] 
                      [encryption algorithm no. a , b,…] 
 
List of compression algorithms: 
1. Huffman 
2. BMP 
3. RLE 
 
List of encryption algorithms: 
a. D.E.S. 
b. Blowfish 
c. Rot2 
 

Figure 3 explains the directory structure 
before mounting while Figure 4 shows the same 
after mounting. 
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         Fig. 3.  Directory structure before  mounting 
 
Consider that the developer gives a command 
like: 
 
/usr/CESFS_folder  1  3  a 
 
Interpretation of the Command: 
The developer prior to giving the command 
should create the CESFS_folder. After successful  
 

 
mounting [2], the folder will have type of file 
system as CES FS, with the mentioned algorithms 
being used for compression and encryption as 
parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Fig. 4.  Directory structure after mounting 
 

All file system operations performed 
under the CESFS_folder will henceforth follow 
the specifications of the CES file system 
framework. When you unmount this file system, 
the CES FS will no longer serve the 
CESFS_folder. Hence any access to files under 
the CES_FS folder will result in the user reading 
encrypted data., if encryption was used when it 
was mounted.  

After the file system has been mounted it 
is stacked on top of the lower level file systems. 
As we use a stackable interface, the system calls, 
which are executed for doing any operation, pass 
through our file system layer. It is at this time that 
we can call the required functions as per the users 
specifications and the output is given to the lower 
level file systems. The lower level file system is 
unaware of the source from where they are getting 
the input. Thus they just process the output of the 
file system generated by our framework, as they 
would normally have. As the CES file system 
framework is in the kernel, the overhead incurred 
is just 1-2% [1]. Figure 5 shows how the C.E.S 
framework will process a write system call. 

As shown in the figure and with respect 
to the command given above, when a system call, 
which processes a request to save data on the disc, 
then it, passes through the CES layer. And the 
appropriate compression and encryption functions 
get called as per those specified by the user. It is 
important to note that the user has to specify this 
order of algorithms only at the time of mounting. 
In this case, our layer calls the functions of 
Huffman Compression, RLE compression and  
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DES encryption in order. Similarly when a read 
system is encountered then the reverse process 
occurs as shown in Figure 6.  
Firstly DES decryption gets called, followed by 
RLE decompression and finally Huffman 
decompression is called. 
  
 
     
  
     
  
 
 
 
 
 
 
     
     
     
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Fig. 5.  Illustration of write system call 
 
 In case, the user enters a command of the 
format: 
 
/usr/CES_folder 1 NULL 
 
With this specification all the operations 
performed in the CES_folder undergo only 
Huffman compression and no encryption is 
performed. 

As we can see from the figure above, the 
interface we propose will act as a perfect stack. It 
simply places itself between the user and the 
kernel, without either having knowledge about its 
existence. The primary advantage of the CES file 
system framework is that the existing file systems 
need not be changed at all. Moreover as the 
stacking takes place in the kernel, there is hardly 
any compromise on the speed. Security of the 

system is enhanced greatly and efficient storage 
management is achieved, improving system 
performance Besides this developers can provide 
new algorithms for compression and encryption 
with minimum effort thus building new file 
systems. 
 
 
     
  
     
  
 
 
 
 
 
 
     
     
     
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Fig. 6.  Illustration of read system call 
 
4 Expected Results 
A detailed study of the file system framework 
proposed by us shows that it will improve the 
performance of the system to a great extent. By 
performance, we mean the security of the system 
coupled with efficient storage management. The 
initial results have been encouraging. Figure 7 
shows the system time comparison between 
various CES file systems [1]. 

We hope to achieve improvement in   
system security as well as storage management. 
This improvement when compared to the Ext2 [5] 
file system also results in performance overhead. 
As all system calls have to pass through the CES 
layer, a small amount of additional time is 
required to perform the desired operations. 
However the advantages far outweigh these 
limitations of the file system.   
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 We anticipate that the additional time 
taken for encryption will be slightly less than that 
required for compression. The framework 
promises to be very successful because it is an 
enhancement and not a replacement to existing 
file systems, and as the code resides in the kernel, 
the overhead incurred is low.  
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Fig. 8.  Performance   overhead    of   a  
CES FS across three operating systems 

 
The overhead will be different across different 
Unix platforms [2], [7]. Figure 8 shows the 
proposed behavior of our file system across the 
basefs, wrapfs and actual operating systems [1]. 
We have based our assumption on performance 
figures of file systems produced by FiST. 

 
5 Future Scope 
The proposed framework will generate file 
systems, which could be called as complete file 
systems. We are currently working on enhancing 
the concept of CES FS by making it an intelligent 
file system.   
 
5.1 Intelligent CES FS 
We have seen that CES FS applies the encryption 
and compression algorithms to every file within 
the name-space, irrespective of its access 
frequency. In broad terms, it will compress every 
file to the same extent whether it is accessed once 
a year or once a day.  

We are working on heuristics that will 
enable us to evolve CES FS into an intelligent file 
system. By ‘intelligence’  we mean that the file 
system keeps a track of how frequently a file is 
used and accordingly decides the level of 
compression to be applied to it. For instance, a 
particular which is accessed once a month would 
be reduced by 90% of it’ s original size while a 
file which is used once a week would be shrunk 
by 10% of its size. This is because compression 
requires considerable CPU utilization. 
Additionally, some files, which are used 
frequently, would be stored in some sort of a 
cache, with minimal compression so that they can 
be accessed with minimal delay. 
 
6 Conclusion 
The basic aim of working on the CES FS was to 
design a file system framework, which would 
serve the purpose of filling the loopholes of 
existing file systems enable developers to 
leverage existing stable file systems by providing 
them with a means to incorporate both security 
through encryption and efficient data storage 
through compression. The developer no longer 
will require intricate knowledge of file system 
internals to provide this functionality. The entire 
process of writing a file system with the desired 
compression or encryption algorithm will require 
writing 2 simple functions which will provide the 
ability to encrypt and decrypt and the other which 
will provide the compression and decompression 
facility. 

We have been successful in doing so by 
designing a file system framework that builds 
itself on existing file systems providing additional 
benefits. The CES file system automatically 
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encrypts and compresses the files stored in its 
name-space. Thereby providing optimum security 
and efficient use of storage resources. 

With more work on this in the future, we 
aim to build an intelligent file system that will 
selectively compress files after studying usage 
patterns.  
 
Appendix 
The CES file system framework makes use of the 
concept of virtual file system. A clear 
understanding of the VFS interface [1], [2], [4] is 
essential for getting acquainted with the 
functionality of our file system framework. 
 
Struct VFS 
An instance of the vfs structure exists in a 
running kernel for each mounted file system. All 
of these instances are chained together in a singly-
linked list. The head of the list is a global variable 
called root_vp, which contains the vfs for the 
root device. The field vfs_next links one vfs 
structure to the following one in the list.  
 
typedef struct vfs  
  { 
  struct vfs  *vfs_next;            
  struct vfsops  *vfs_op;        
  struct vnode  vfs_vnodecovered;  
  u_long   vfs_flag;                
  u_long   vfs_bsize;         
  int   vfs_fstype;              
  fsid_t   vfs_fsid;           
  caddr_t  vfs_data;                
  dev_t   vfs_dev;          
  u_long   vfs_bcount;              
  u_short  vfs_nsubmounts;    
  struct vfs  *vfs_list;               
  struct vfs  *vfs_hash;         
  kmutex_t  vfs_reflock;             
  } vfs_t; 
 
Struct Vfsops 
The vfs operations structure (struct vfsops, seen 
below) is constant for each type of file system. 
For every instance of a file system, the vfs field 
vfs_op is set to the pointer of the operations 
vector of the underlying file system. 
 
typedef struct vfsops 
  { 
  int (*vfs_mount)(); 
  int (*vfs_unmount)(); 
  int (*vfs_root)(); 
  int (*vfs_statvfs)(); 
  int (*vfs_sync)(); 
  int (*vfs_vget)(); 
  int (*vfs_mountroot)(); 
  int (*vfs_swapvp)(); 
  }vfs_ops_t; 

Struct Vnode 
An instance of struct vnode exists in a running  
system for every opened (in-use) file, directory, 
symbolic-link, hard-link, block or character 
device, a socket, a Unix pipe, etc.  
 
typedef struct vnode  
  { 
  kmutex_t  v_lock;               
  u_short   v_flag;                  
  u_long    v_count;  
  struct vfs   *v_vfsmountedhere;       
  struct vnodeops   *v_op;                   
  struct vfs   *v_vfsp;                 
  struct stdata   *v_stream;               
  struct page  *v_pages;                
  enum vtype   v_type;                  
  dev_t    v_rdev;                   
  caddr_t   v_data;                  
  struct filock   *v_filocks;             
  kcondvar_t   v_cv;      
  } vnode_t; 
 
Struct Vnodeops 
An instance of the vnode operations structure 
struct vnodeops, listed in exists for each different 
type of file system. For each vnode, the vnode 
field v_op is set to the pointer of the operations 
vector of the underlying file system.  
 
typedef struct vnodeops  
  { 
  int (*vop_open)(); 
  int (*vop_close)(); 
  int (*vop_read)(); 
  int (*vop_write)(); 
  int (*vop_ioctl)(); 
  int (*vop_setfl)(); 
  int (*vop_getattr)(); 
  int (*vop_setattr)(); 
  int         (*vop_lookup)(); 
  int (*vop_link)(); 
  int (*vop_rename)();… 
  }vnodeops_t; 
 
These structures lay the foundation of a stackable 
file system. The CES FS uses these extensively to 
form a layer above the underlying file system 
inside the kernel. 
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