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Abstract: The Lustre File System architecture supports Object Based Storage. It 
separates data and metadata path of file system operations. An outage of the Metadata 
Server could considerably degrade the system performance. Providing a backup 
Metadata Server will increase the availability of Lustre File System to 99.9%. The 
backup server monitors the primary server over the network and shared storage to detect 
failure. On failure of the primary server, the backup builds the state that was on the 
primary, and takes up its tasks. The first request from the clients triggers the recovery 
process on them. All further requests are queued till the completion of the recovery and 
clients thus receive non-blocking service from the server. 
 
Index Terms:  Object Based Storage, Lustre File System, Metadata Server, High 
Availability, IP takeover 



1 Introduction 
Traditionally, three tier architectures 

consist of application, file system and storage 
device. These layers can be configured in various 
ways to obtain storage architecture flavors like 
Direct Attached Storage (DAS), Network Attached 
Storage (NAS) and Storage Area Network (SAN). 
These are fundamentally block-based technologies. 
NAS supports interoperability but projects poor 
storage performance. On the other hand, SAN 
assures high performance. The need to integrate the 
strengths of these three architectures into a single 
framework gave rise to Object Based Storage (OBS) 
[2]. 

 Object Based Storage is a level higher 
than a block-level method but one level below a 
file-level access method. It is not intended to 
replace either block-level or file-level access 
methods but rather to add a needed layer of 
abstraction that sits between them and thus provides 
the required amount of intelligence with the storage 
device. This moves the storage management 
functionality with the storage layer itself. The unit 
of storage is an object [2]. Object Based Storage is 
an aggregation of logical components, which run on 
a cluster of systems. The three components are the 
Metadata Server (MDS), Object Storage Targets 
(OST) and the Client File System (CFS). 

The Metadata Server is used as a global 
resource to find the location of objects.  Object 
Storage Targets perform block allocation for data 
objects, leading to distributed and scalable 
allocation of metadata. The Client File System now 
becomes simply a File Manager: an abstraction 
layer between the user application and the OST. 
Requests from the CFS first go to the MDS and then 
there is direct data transfer between the CFS and the 
OST. This makes the system highly scalable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Lustre File System Overview 
 

 
The Lustre File System [1] architecture is 

based on Object Based Storage. The USA National 
Laboratories and Department of Defense (DOD) 
started exploring Lustre as a potential next 
generation file system [1]. The development of the 
system continued in aim to serve for the same. To 
facilitate the compute-intensive operation that was 
required, Lustre was required to not only yield 
excellent performance but also be scalable. The 
current implementation of Lustre supports 1000’s of 
clients and 100’s of OST’s, managed by a single 
MDS [4]. Clearly, the Metadata Server is the most 
crucial part of the Lustre system and its 
uninterrupted and consistent   working    is   of   
prime importance for efficient working of the 
system as it is a single point of failure.  

This paper describes the design and 
implementation of a Highly Available Class 3 [8] 
Metadata Server (HA-MDS) for Lustre. We have 
introduced a backup Metadata Server to monitor the 
primary server.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2   System Overview 
 
The high availability subsystem consists of 

mechanisms to detect failure of the primary MDS, 
failover the backup MDS and re-establish lost 
connections with the clients. In section 2, we 
describe the design goals of this system. In section 
3, we detail the system design. Section 4 
characterizes the system. In section 5, we compare 
our test results with the current Lustre system. 
Finally, we draw conclusions and outline future 
work in Section 6. 
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2 Design Goals 
 

The primary goals of a Highly Available 
(HA) system are:  

• Detecting failure of primary server. 

• Failover. 

• State transfer to backup server. 

• Re-establish client connections. 

• Serve pending requests.  

• Continue normal request processing. 

The primary MDS could suffer a network 
problem, its shared storage access could fail or the 
system itself could go down. The backup server is 
responsible for detecting any of these or a 
combination thereof. The primary MDS needs to 
send packets through the network to the backup 
MDS to ensure that it is able to access the network. 
Similarly, it is made to continuously write to a file 
which is read by the backup MDS to ascertain that it 
is able to access the storage as well.  

In case of a system crash, both of the 
above tests would diagnose the failure of the 
primary MDS. In case of only a network or storage 
access failure, it is the responsibility of the Failover 
part of the backup server to ask the primary to bring 
itself down, as it can no longer serve. 

The Metadata Server stores information on 
a persistent storage. Vital among this information is 
the Lustre metadata and client transaction 
information. At any instance, if the primary MDS 
fails, the backup server should be able to obtain this 
information essential to build the same state as that 
on the primary MDS. This can be achieved by 
maintaining a content storage shared by the two 
servers.  The server side recovery can thus be done. 

The client part of the recovery would only 
start when the client makes the first request during 
or after the secondary metadata server takes over. 
This starts with reestablishing the connection with 
the MDS, transparent to the client request. These 
operations are part of the Request Retry module. 
During this course, the client regains all the 
necessary information for future request processing. 
All the requests that had been kept pending during 
this course are then served and the CFS-MDS 
transaction continues in the normal manner. 

The primary server may fail again; and as 
long as a backup server is provided, it would 
failover and a highly available metadata service 
provided to the client. 

3 Design 
 This section elaborates on the design goals 
mentioned briefly in the previous section. It 
describes the architecture and functionality of the 
HA-MDS framework.  

3.1 Failure Detection 
This component deals with detecting the 

existence or ‘liveness’  of the Metadata Server. Two 
daemons are used in parallel to detect server failure: 

• Heartbeat daemon [10] is used to detect 
whether the server is responding to 
network connections.  

• Shared-storage daemon is used to detect 
whether the server is accessing shared 
storage. 

Heartbeat Daemon 

The heartbeat daemon examines server 
failure over the network. “I am alive” messages are 
exchanged between the primary and backup 
Metadata Servers. These messages are the 
‘time_of_day’  value on each system. Three 
consecutive timeouts signal failure. The backup 
Metadata Server can detect failure of the primary 
Metadata Server in 9 seconds. 

Shared-storage Daemon 

The shared storage daemon checks for 
server failure over shared storage. The daemon on 
each server writes the ‘time_of_day’  value and 
reads the value written by the other server after 
regular time intervals. If a difference of 8 seconds is 
observed in the value read and the expected value, 
then a timeout has occurred, causing a check on the 
failure of the other server. Two consecutive 
timeouts signal failure. Thus a server can detect 
failure of the other server in 16 seconds. 

Service Manager 

The functionality of the daemons differs on 
the primary Metadata Server and on the backup 
Metadata Server. Thus a manager is required to start 
the daemons for the appropriate configuration. For 
this purpose, the service manager is used, which 
reads a file on the shared storage to detect presence 
of a server. It reads the file five times; if the value 
changes even once then it is configured as MDS2, 
else MDS1.  



3.2 Failover Component 
The task of this component is to transfer 

the state from the primary Metadata Server to the 
backup Metadata Server.  This includes the 
following functionality: 

• Force failure  

• Exchange IP Addresses 

• Transfer state  

• Restart Failure Detection component  

The primary Metadata Server could fail 
due to network failure or system crash. In the case 
of a network failure it implies that the server is 
unable to reach the network but is configured as a 
Metadata Server. For such a scenario it is required 
that the backup Metadata Server force the primary 
Metadata Server to sync (flush) its data onto shared 
storage and kill itself. This concept is commonly 
called Shoot The Other Node In The Head 
(STONITH) [11]. The secondary Metadata Server 
comes up by forming into its memory all state 
information and structures that the primary server 
was maintaining. These structures and state 
information are obtained from the last received file 
in which the primary server maintains the in-
memory state information. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Before Failure  

The IP addresses of these two Metadata 
Servers are exchanged. The network interface card 
on each system has a unique Ethernet address. To 
affect an IP exchange, the Ethernet address mapped 
to MDS1’ s IP address needs to be changed to 
MDS2’ s Ethernet address. Address Resolution 

Protocol (ARP) [13] cache flush is used to change 
this mapping. 

The backup Metadata Server then reads the 
shared storage for the client transaction information 
and system metadata. The Failure Detection 
component is then invoked for this new MDS1 
configuring the backup Metadata Server as MDS1.  

3.3 Request-Retry Component 
Clients establish connections with the 

server using a socket1. Over this physical channel, 
the client can establish several logical connections. 
In the case of a timeout, an upcall is invoked to 
establish a new physical connection in user space. If 
the timeout had occurred due to failure of MDS1, 
then the failover mechanism will activate MDS2 in 
the time span during which the request will timeout. 
Hence a replaced Metadata Server is made available 
before the client tries to establish a connection with 
it. To establish this physical connection an upcall is 
made to the user space. Over this physical 
connection, a logical connection needs to be made 
to recover address of state information for the client.  

Figure 4 and 5 show the system operation 
view before and after failure of the primary 
Metadata Server. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  Fig. 4: After Failover                                     

For each client that the Metadata Server 
connects to, it maintains in its memory, as well as in 
the last-rcvd file a structure that informs about the 
client’ s identification and the last transaction that it 
has successfully performed. Although the backup 
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 Socket: communication endpoint 
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server, during failover brings up these structures in 
its memory, the client needs to know about their 
address in memory. Considering that the frequency 
of metadata operations is much less than the 
frequency of data operations, we can conclude that 
only a few clients would urgently require a recovery 
from a primary server failure. Thus, this 
reconnection is handled by a recovery daemon on 
the client subsystem. 

4 Characteristics of the System 
 The HAMDS system will prevent outages 
due to the following faults: 

• Network card failure of the main MDS 
• Ethernet failure of the main MDS 
• Processor failure for main MDS 
• RAM/Cache failure for main MDS 
• Buses, battery, fan for main MDS 
• File System / OS error 
• Software design error 
• Hardware design error 
• Power failure 
• Loss of cooling due to hot and unfavorable 

conditions 
• Inexperienced/malicious user/operator 

causing main MDS to crash 
• Software installation/upgradation 
• Upgrading the Hardware (except SCSI) 

 
With considerations to the above-

mentioned cases, the downtime in a year will be 
513.208 minutes, i.e. 8.5534 hours [25]. Thus, the 
solution will provide 99.9% availability. The HA-
MDS for Lustre system belongs to Class 3. 

5 Test Results 
The Metadata Server in the existing Lustre 

system is a single point of failure. Any requests sent 
by the clients after the Metadata Server crashes will 
timeout and result in a system failure.  

From the tests carried out, we conclude 
that the backup MDS takes over within 30 seconds 
after primary MDS failure. Request times out after 
30 seconds after being sent. New connection is 
established. System operation continues un-
interrupted. Thus, the client recovers. The HA-MDS 
provides un-interrupted service to Lustre clients for 
metadata transactions.    

We have also tested the performance of 
Lustre and our HA-MDS system using IOZone; a 
file system benchmark tool. Figure 5 illustrates the 
performance comparison between lustre, 
chirayu_lustre (HA-MDS) and chirayu_timeout 
(after failover) [26].   
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Fig. 5: IOZone Test Results 

6 Conclusions and Future Work 
As the need for scalable cluster systems 

increases, server failures become extremely 
intolerable. Lustre is an example of a cluster file 
system supporting 10000’ s of clients managed by a 
single Metadata Server. This makes the server a 
single point of failure.  We have designed and 
implemented a Highly Available solution for the 
Metadata Server in Lustre, belonging to Class3.  

The system, which we have built, is highly 
available. The clients get continuous service but 
they are interrupted for the failover time, which is 
approximately 30 seconds. We now aim to make a 
fault tolerant system in which there is no waiting 
period for the clients, i.e. instant failover. This will 
be achieved by forcing the backup server to build up 
state simultaneously with the primary server by 
listening to all client requests. It does not wait for 
the primary server to fail before it starts building up 
state information about the clients.  

The other consideration is that the backup 
server in our system is idle, i.e. it only monitors the 
primary server and does not act as a server. An 
enhancement to this would be to enable the backup 
Metadata Server to service client requests for 
different namespace. This would remove the 
overhead of an idle server, as the backup server 
would also be functioning as a Metadata Server. 
 
Appendix A 
 

MTBF and MTTR of system components 
 



Outage MTBF (hours) MTTR 
(minutes) 

Realtek NIC 
card [17] 50000 – 100000 15 

CAT5 
Ethernet 
Cabling 

100000 – 200000 10 

Fast Ehernet 
Switch [18], 
[19] 

200000 – 500000 60 

Processor 
[24] 70000-100000 500 

RAM/Cache 
[20] 200000 – 500000 60 

SCSI disk 
[21], [22] 100000 – 300000 300 

Linux Crash 
[23] 4360 – 8760 240 

Data 
Organization 
on SCSI 

4380 120 
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