
CHIRAYU: A Highly Available Metadata Server for
Object Based Storage Cluster File System

 Sapna Bafna sapnabafna@ieee.org
 Shruti Dalvi shruti_dalvi@ieee.org
 Abhinay Kampasi abhinaykampasi@ieee.org
 Aditya Kulkarni adityakulkarni@ieee.org

Final Year Engineering,
Computer Science Department,

Pune Institute of Computer Technology,
Dhankavdi, Pune-411043, India.

Abstract: The Lustre File System architecture supports Object Based Storage. It
separates data and metadata path of file system operations. An outage of the Metadata
Server could considerably degrade the system performance. Providing a backup
Metadata Server will increase the availability of Lustre File System to 99.9%. The
backup server monitors the primary server over the network and shared storage to detect
failure. On failure of the primary server, the backup builds the state that was on the
primary, and takes up its tasks. The first request from the clients triggers the recovery
process on them. All further requests are queued till the completion of the recovery and
clients thus receive non-blocking service from the server.

Index Terms: Object Based Storage, Lustre File System, Metadata Server, High
Availability, IP takeover

1 Introduction
Traditionally, three tier architectures

consist of application, file system and storage
device. These layers can be configured in various
ways to obtain storage architecture flavors like
Direct Attached Storage (DAS), Network Attached
Storage (NAS) and Storage Area Network (SAN).
These are fundamentally block-based technologies.
NAS supports interoperability but projects poor
storage performance. On the other hand, SAN
assures high performance. The need to integrate the
strengths of these three architectures into a single
framework gave rise to Object Based Storage (OBS)
[2].

 Object Based Storage is a level higher
than a block-level method but one level below a
file-level access method. It is not intended to
replace either block-level or file-level access
methods but rather to add a needed layer of
abstraction that sits between them and thus provides
the required amount of intelligence with the storage
device. This moves the storage management
functionality with the storage layer itself. The unit
of storage is an object [2]. Object Based Storage is
an aggregation of logical components, which run on
a cluster of systems. The three components are the
Metadata Server (MDS), Object Storage Targets
(OST) and the Client File System (CFS).

The Metadata Server is used as a global
resource to find the location of objects. Object
Storage Targets perform block allocation for data
objects, leading to distributed and scalable
allocation of metadata. The Client File System now
becomes simply a File Manager: an abstraction
layer between the user application and the OST.
Requests from the CFS first go to the MDS and then
there is direct data transfer between the CFS and the
OST. This makes the system highly scalable.

Fig. 1: Lustre File System Overview

The Lustre File System [1] architecture is

based on Object Based Storage. The USA National
Laboratories and Department of Defense (DOD)
started exploring Lustre as a potential next
generation file system [1]. The development of the
system continued in aim to serve for the same. To
facilitate the compute-intensive operation that was
required, Lustre was required to not only yield
excellent performance but also be scalable. The
current implementation of Lustre supports 1000’s of
clients and 100’s of OST’s, managed by a single
MDS [4]. Clearly, the Metadata Server is the most
crucial part of the Lustre system and its
uninterrupted and consistent working is of
prime importance for efficient working of the
system as it is a single point of failure.

This paper describes the design and
implementation of a Highly Available Class 3 [8]
Metadata Server (HA-MDS) for Lustre. We have
introduced a backup Metadata Server to monitor the
primary server.

Fig. 2 System Overview

The high availability subsystem consists of

mechanisms to detect failure of the primary MDS,
failover the backup MDS and re-establish lost
connections with the clients. In section 2, we
describe the design goals of this system. In section
3, we detail the system design. Section 4
characterizes the system. In section 5, we compare
our test results with the current Lustre system.
Finally, we draw conclusions and outline future
work in Section 6.

 Directory
 Metadata and
 Concurrency

file I/O file Status
file locking file Creation

Application

Client File
System

Meta -
data

Server

Object
Storage

Target(s)

User Space Application

Client File System
Lustre Client

Communication
System

Object
Storage
Target

Metadata
Server

Backup
Server

2 Design Goals

The primary goals of a Highly Available
(HA) system are:

• Detecting failure of primary server.

• Failover.

• State transfer to backup server.

• Re-establish client connections.

• Serve pending requests.

• Continue normal request processing.

The primary MDS could suffer a network
problem, its shared storage access could fail or the
system itself could go down. The backup server is
responsible for detecting any of these or a
combination thereof. The primary MDS needs to
send packets through the network to the backup
MDS to ensure that it is able to access the network.
Similarly, it is made to continuously write to a file
which is read by the backup MDS to ascertain that it
is able to access the storage as well.

In case of a system crash, both of the
above tests would diagnose the failure of the
primary MDS. In case of only a network or storage
access failure, it is the responsibility of the Failover
part of the backup server to ask the primary to bring
itself down, as it can no longer serve.

The Metadata Server stores information on
a persistent storage. Vital among this information is
the Lustre metadata and client transaction
information. At any instance, if the primary MDS
fails, the backup server should be able to obtain this
information essential to build the same state as that
on the primary MDS. This can be achieved by
maintaining a content storage shared by the two
servers. The server side recovery can thus be done.

The client part of the recovery would only
start when the client makes the first request during
or after the secondary metadata server takes over.
This starts with reestablishing the connection with
the MDS, transparent to the client request. These
operations are part of the Request Retry module.
During this course, the client regains all the
necessary information for future request processing.
All the requests that had been kept pending during
this course are then served and the CFS-MDS
transaction continues in the normal manner.

The primary server may fail again; and as
long as a backup server is provided, it would
failover and a highly available metadata service
provided to the client.

3 Design
 This section elaborates on the design goals
mentioned briefly in the previous section. It
describes the architecture and functionality of the
HA-MDS framework.

3.1 Failure Detection
This component deals with detecting the

existence or ‘liveness’ of the Metadata Server. Two
daemons are used in parallel to detect server failure:

• Heartbeat daemon [10] is used to detect
whether the server is responding to
network connections.

• Shared-storage daemon is used to detect
whether the server is accessing shared
storage.

Heartbeat Daemon

The heartbeat daemon examines server
failure over the network. “I am alive” messages are
exchanged between the primary and backup
Metadata Servers. These messages are the
‘time_of_day’ value on each system. Three
consecutive timeouts signal failure. The backup
Metadata Server can detect failure of the primary
Metadata Server in 9 seconds.

Shared-storage Daemon

The shared storage daemon checks for
server failure over shared storage. The daemon on
each server writes the ‘time_of_day’ value and
reads the value written by the other server after
regular time intervals. If a difference of 8 seconds is
observed in the value read and the expected value,
then a timeout has occurred, causing a check on the
failure of the other server. Two consecutive
timeouts signal failure. Thus a server can detect
failure of the other server in 16 seconds.

Service Manager

The functionality of the daemons differs on
the primary Metadata Server and on the backup
Metadata Server. Thus a manager is required to start
the daemons for the appropriate configuration. For
this purpose, the service manager is used, which
reads a file on the shared storage to detect presence
of a server. It reads the file five times; if the value
changes even once then it is configured as MDS2,
else MDS1.

3.2 Failover Component
The task of this component is to transfer

the state from the primary Metadata Server to the
backup Metadata Server. This includes the
following functionality:

• Force failure

• Exchange IP Addresses

• Transfer state

• Restart Failure Detection component

The primary Metadata Server could fail
due to network failure or system crash. In the case
of a network failure it implies that the server is
unable to reach the network but is configured as a
Metadata Server. For such a scenario it is required
that the backup Metadata Server force the primary
Metadata Server to sync (flush) its data onto shared
storage and kill itself. This concept is commonly
called Shoot The Other Node In The Head
(STONITH) [11]. The secondary Metadata Server
comes up by forming into its memory all state
information and structures that the primary server
was maintaining. These structures and state
information are obtained from the last received file
in which the primary server maintains the in-
memory state information.

Fig. 3: Before Failure

The IP addresses of these two Metadata
Servers are exchanged. The network interface card
on each system has a unique Ethernet address. To
affect an IP exchange, the Ethernet address mapped
to MDS1’ s IP address needs to be changed to
MDS2’ s Ethernet address. Address Resolution

Protocol (ARP) [13] cache flush is used to change
this mapping.

The backup Metadata Server then reads the
shared storage for the client transaction information
and system metadata. The Failure Detection
component is then invoked for this new MDS1
configuring the backup Metadata Server as MDS1.

3.3 Request-Retry Component
Clients establish connections with the

server using a socket1. Over this physical channel,
the client can establish several logical connections.
In the case of a timeout, an upcall is invoked to
establish a new physical connection in user space. If
the timeout had occurred due to failure of MDS1,
then the failover mechanism will activate MDS2 in
the time span during which the request will timeout.
Hence a replaced Metadata Server is made available
before the client tries to establish a connection with
it. To establish this physical connection an upcall is
made to the user space. Over this physical
connection, a logical connection needs to be made
to recover address of state information for the client.

Figure 4 and 5 show the system operation
view before and after failure of the primary
Metadata Server.

 Fig. 4: After Failover

For each client that the Metadata Server
connects to, it maintains in its memory, as well as in
the last-rcvd file a structure that informs about the
client’ s identification and the last transaction that it
has successfully performed. Although the backup

1
 Socket: communication endpoint

 Request

 Connection

 Failure
 Detection

User Appl

CFS

Primary
MDS (IP1)

Backup
MDS (IP2)

Storage

 Request

 upcall
 Failure

 Connection

 Failover

User Appl

CFS

Primary
MDS

Backup
MDS (IP1)

Storage

New
Connection

Retry
Request

server, during failover brings up these structures in
its memory, the client needs to know about their
address in memory. Considering that the frequency
of metadata operations is much less than the
frequency of data operations, we can conclude that
only a few clients would urgently require a recovery
from a primary server failure. Thus, this
reconnection is handled by a recovery daemon on
the client subsystem.

4 Characteristics of the System
 The HAMDS system will prevent outages
due to the following faults:

• Network card failure of the main MDS
• Ethernet failure of the main MDS
• Processor failure for main MDS
• RAM/Cache failure for main MDS
• Buses, battery, fan for main MDS
• File System / OS error
• Software design error
• Hardware design error
• Power failure
• Loss of cooling due to hot and unfavorable

conditions
• Inexperienced/malicious user/operator

causing main MDS to crash
• Software installation/upgradation
• Upgrading the Hardware (except SCSI)

With considerations to the above-

mentioned cases, the downtime in a year will be
513.208 minutes, i.e. 8.5534 hours [25]. Thus, the
solution will provide 99.9% availability. The HA-
MDS for Lustre system belongs to Class 3.

5 Test Results
The Metadata Server in the existing Lustre

system is a single point of failure. Any requests sent
by the clients after the Metadata Server crashes will
timeout and result in a system failure.

From the tests carried out, we conclude
that the backup MDS takes over within 30 seconds
after primary MDS failure. Request times out after
30 seconds after being sent. New connection is
established. System operation continues un-
interrupted. Thus, the client recovers. The HA-MDS
provides un-interrupted service to Lustre clients for
metadata transactions.

We have also tested the performance of
Lustre and our HA-MDS system using IOZone; a
file system benchmark tool. Figure 5 illustrates the
performance comparison between lustre,
chirayu_lustre (HA-MDS) and chirayu_timeout
(after failover) [26].

CHIRAYU (1000KB TEST)

0

200

400

600

800

1000

1200

write rewrite read reread rread rwrite bread rrewrite s read fwrite frewrite fread freread

file operations

K
B

/s
ec

lustre
chirayu_normal
chirayu_failover

Fig. 5: IOZone Test Results

6 Conclusions and Future Work
As the need for scalable cluster systems

increases, server failures become extremely
intolerable. Lustre is an example of a cluster file
system supporting 10000’ s of clients managed by a
single Metadata Server. This makes the server a
single point of failure. We have designed and
implemented a Highly Available solution for the
Metadata Server in Lustre, belonging to Class3.

The system, which we have built, is highly
available. The clients get continuous service but
they are interrupted for the failover time, which is
approximately 30 seconds. We now aim to make a
fault tolerant system in which there is no waiting
period for the clients, i.e. instant failover. This will
be achieved by forcing the backup server to build up
state simultaneously with the primary server by
listening to all client requests. It does not wait for
the primary server to fail before it starts building up
state information about the clients.

The other consideration is that the backup
server in our system is idle, i.e. it only monitors the
primary server and does not act as a server. An
enhancement to this would be to enable the backup
Metadata Server to service client requests for
different namespace. This would remove the
overhead of an idle server, as the backup server
would also be functioning as a Metadata Server.

Appendix A

MTBF and MTTR of system components

Outage MTBF (hours) MTTR
(minutes)

Realtek NIC
card [17] 50000 – 100000 15

CAT5
Ethernet
Cabling

100000 – 200000 10

Fast Ehernet
Switch [18],
[19]

200000 – 500000 60

Processor
[24] 70000-100000 500

RAM/Cache
[20] 200000 – 500000 60

SCSI disk
[21], [22] 100000 – 300000 300

Linux Crash
[23] 4360 – 8760 240

Data
Organization
on SCSI

4380 120

Acknowledgements
 We would like to thank Dr. C.V.K. Rao,
Head of Computer Department, PICT and Mr.
Aditya Kini from CalSoft. Pvt. Ltd. for their
guidance throughout the study of Lustre. We are
also grateful to Mr. Phil Schwan, Cluster File
Systems, Inc. for his words of encouragement, Mr.
Anandamoy Roychowdhary from CalSoft Pvt. Ltd.
who helped us throughout the year. A special thanks
to Mr. Amey Inamdar and Mr. Kedar Sovani from
CalSoft for their brotherly support during the
development work on this project.

References
[1] Peter J. Braam, 'The Lustre Storage
Architecture', Cluster File Systems, Inc.
[2] Thomas M. Ruwart, 'OSD: A Tutorial on Object
Storage Devices', Advanced Concepts Ciprico, Inc.
[3] Gene Milligan, ‘Information Technology - SCSI
Object Based Storage Device Commands (OSD)’ ,
T10, Working draft, Seagate Technology Inc.
NCITS TBD-200X, Project 1355D, Revision 3, 1
October 2000.
[4] Mike Mesnier, ‘Rebirth of Object Based
Storage’ , Intel Labs, January 22, 2002.
[5] Peter J. Braam, ‘Lustre: A Scalable, High
Performance File System’ , Cluster File Systems,
Inc.
[6] Peter J. Braam, ‘Lustre: A High-Performance,
Scalable, Open Distributed File System for Clusters
and Shared-Data Environments', Cluster File
Systems Inc.

[7] Rumi Zahir, ‘Roadmap Proposal for Lustre
Request Processing & Bulk Data Movement’ , Intel
Labs, Intel Corporation, June 3, 2002.
[8] Gregory Pfister, ‘In Search Of Clusters’ , 2nd
Edition, Prentice Hall Inc., 1998.
[9] A.K. Bhide, E.N. Elnozahy, S.P. Morgan., 'A
Highly Available Network File Server', In Pro-
ceedings of the USENIX Winter Conference 1991,
pp. 199-205, Jan 1991.
[10] Alan Robertson, 'Linux-HA Heartbeat System
Design', SuSE Labs, Proceedings of the 4th Annual
Linux Showcase & Conference, Atlanta Atlanta,
Georgia, USA October 10 –14, 2000.
[11] Alan Robertson, 'Resource fencing using
STONITH', IBM Linux Technology center, Colo-
rado.
[12] W. Richard Stevens, 'UNIX Network
Programming', Prentice Hall India, 1999.
[13] W. Richard Stevens, 'TCP/IP Illustrated,
Volume I The protocols', Pearson Education.
[14] Daniel P. Bovet, Marco Cesati, 'Understanding
the Linux Kernel', O’ Reilly Publications, March
2002.
 [15] Maurice Bach, 'The Design of the UNIX
Operating System', Prentice Hall (1987).
[16] Roger S.Pressman, 'Software Engineering- A
Practitioner's Approach', Fifth Edition, McGRAW-
HILL International Edition.
[17] http://adaptec.com, Adaptec Duo64, “ANA™-
62022 Two-Port, 64-Bit PCI Network Interface
Card for Fast Ethernet Environments.”
[18] http://www.sixnetio.com/html_files/products_
and_groups/mtbf.htm, SIXNET MTBF for fast
ethernet switches.
[19] http://www.starmicrotech.com/index.cfm,Cisco
Catalyst 2950G-24 24 port Intelligent Ethernet
Switch.
[20] http://www.synchrotech.com/
[21] RK05/DIABLO/PERTEC DRIVES
UPGRADED TO SCSI AEM-5C Cartridge
Disk Replacement
[22] http://www.hardwareanalysis.com/
[23] http://gnet.dhs.org/stories/bloor.php3, Bloor
Research, “Why Linux is better than Windows”.
[24] http://www.itox.com/pages/products/mothers/3
70/gcs15.cfm
[25] Sapna Bafna, Shruti Dalvi, Abhinay Kampasi,
Aditya Kulkarni, ‘Increasing current Lustre
availability to 99.9% with a backup Metadata
Server’ , Jan 2003.
[26] Sapna Bafna, Shruti Dalvi, Abhinay Kampasi,
Aditya Kulkarni, ‘IOZone Test Results for HA-
MDS’ , March 2003.

